Топливная система судовой дизельной установки

Отличие бензиновых и дизельных моторов

Перед тем, как обратить пристальное внимание на устройство и принцип работы топливных систем разных типов, необходимо чётко понимать – чем бензиновый мотор отличается от дизельного агрегата. а отличия, к слову, довольно-таки существенные

В первую очередь, стоит отметить степени сжатия, которые необходимы для воспламенения разных видов топлива:

  • Для бензина она составляет 9-11 атмосфер;
  • Для дизельного горючего – целых 19-25 единиц.

Однако главное отличие кроется далеко не в этом. Основа этого вопроса заключается в способах формирования топливной смеси, которая воспламеняется в цилиндрах. Дело в том, что в полости бензиновых двигателей горючее поступает сразу в смеси бензина и воздуха. В дизель же воздух и топливо отправляются по отдельности. Принцип его работы таков:

  1. Сначала в полость каждого цилиндра поступает воздух, который буквально за мгновенье сжимается и нагревается до 700-800 градусов по Цельсию;
  2. После этого, уже на завершающем этапе сжатия, форсунки доставляют в каждый цилиндр необходимое количество топлива;
  3. В конце концов, происходит неизбежный взрыв топливной смеси, который и толкает валы мотора, обеспечивающие движения автомобиля.

Для тех, кто слабо знаком с физикой, будет удивлением, что подобная организация двигателя не требует использования свечей зажигания. Запуск дизельного мотора происходит при помощи нагревательных элементов, которые на этапе запуска ДВС подогревают воздух в цилиндрах до нужной температуры. Затем, когда произошло несколько тактов сжатия и взрывов, нагревательные элементы вовсе не нужны, так как температура в цилиндрах не падает, и они отключаются. Вследствие этого воздух, естественно, нагревается сам и уже «собственнолично» способен воспламенять полученное топливо.

Размещение отраслей топливно-энергетического комплекса

Топливно-энергетический комплекс (ТЭК) — один из межотраслевых комплексов, который представляет собой совокупность тесно взаимосвязанных и взаимозависимых отраслей топливной промышленности и электроэнергетики. В его состав входят также специализированные виды транспорта — трубопроводный и магистральные высоковольтные линии.

Топливно-энергетический комплекс — важнейшая структурная составляющая экономики России, один из факторов развития и размещения производительных сил страны. Доля топливно-энергетического комплекса в 2007 г. достигла в экспортном балансе страны более 60%. Топливно-энергетический комплекс оказывает существенное влияние на формирование бюджета страны и его региональную структуру. Отрасли комплекса тесно связаны со всеми отраслями экономики России, имеют большое районообразующее значение, создают предпосылки для развития топливных производств и служат базой для формирования промышленных, включая электроэнергетические, нефтехимические, углехимические, газопромышленные комплексы.

Вместе с тем нормальное функционирование топливно-энергетического комплекса сдерживает дефицит инвестиций, высокий уровень морального и физического износа основных фондов (в угольной и нефтедобывающей промышленности исчерпан проектный ресурс более 50% оборудования, в газовой промышленности — более 35%, свыше половины магистральных нефтепроводов эксплуатируется без капитального ремонта 25-35 лет), увеличение его негативного влияния на окружающую среду (на долю топливно-энергетического комплекса приходится 1/2 выбросов вредных веществ в атмосферу, 2/5 сточных вод, 1/3 твердых отходов от всех потребителей).

Особенность развития топливно-энергетического комплекса России состоит в перестройке его структуры в направлении повышения за последние 20 лет доли природного газа (более чем в 2 раза) и сокращении доли нефти (в 1,7 раза) и угля (в 1,5 раза), что обусловлено сохраняющимся несоответствием в размещении производительных сил и топливно-энергетических ресурсов (ТЭР), так как до 90% общих запасов ТЭР приходится на восточные районы.

Структура производства первичных энергоресурсов в России* (в % к итогу)

Первичные источники энергии 1980 1990 2000 2007
Производство ТЭР, всего 100 100 100 100
В том числе: нефть, включая газовый конденсат 54,7 39,6 32,8 39,4
естественный газ 20,5 39,7 47,7 42,2
уголь 18,7 14,5 12,2 11,5
топливный торф 0,3 0,09 0,05 0,02
сланцы 0,1 0,06 0,03 0,00
дрова 1,5 0,95 0,42 0,29
электроэнергия, вырабатываемая гидро-, атомными и геотермальными электростанциями 4,2 5,1 6,8 6,6

Потребности национального хозяйства в топливе и энергии зависят от динамики экономики и от интенсивности энергосбережения. Высокая энергоемкость российской экономики обусловлена не только природно-географическими особенностями страны, но и высокой долей энергоемких отраслей тяжелой индустрии, преобладанием старых энергорасточительных технологий, прямыми потерями энергии в сетях. До сих пор отсутствует широкая практика энергосберегающих технологий.

Топливная промышленность. Минеральное топливо является основным источником энергии в современном хозяйстве. По топливным ресурсам Россия занимает первое место в мире. В их региональной структуре преобладает уголь, но в Западной Сибири, Поволжье, на Северном Кавказе и Урале первостепенное значение имеют нефть и природный газ.

В 2007 г. в целом по стране добыча нефти составила 491 млн. т, газа — 651 млрд. м3, угля — 314 млн. т. В размещении добычи топлива, начиная с 1970-х гг. ХХ в. и вплоть до наших дней, отчетливо прослеживается тенденция — по мере выработки наиболее эффективных месторождений нефти, природного газа и угля в западных районах страны происходит смещение основных объемов их добычи на восток. В 2007 г. в азиатской части России добывалось 93% природного газа, более 70% нефти и 92% угля России.

Cм.далее: Газовая промышленностьСм.далее: Нефтяная промышленностьСм.далее: Угольная промышленность

Дренажная система

На борту самолёта установлена дренажная система открытого типа. Система состоит из двух дренажных баков, дренажного короба, поплавковых клапанов, струйных насосов откачки топлива из дренажных баков, предохранительных пружинных клапанов. Дренажные отверстия трубопроводов и поплавковые клапаны расположены в топливных баках так, что при всех возможных положениях самолёта в полёте и на земле обеспечивается беспрепятственный дренаж топливных баков и предотвращается вытекание топлива через дренажную систему.

Дренажная система поддерживает давление воздуха в надтопливном пространстве топливных баков близкое к давлению наружного воздуха и предотвращает возникновение недопустимого перепада этих давлений. Дренажная система топливных баков работает полностью автоматически, ручного управления и индикации не имеет. В дренажных баках расположены предохранительные (разрывающиеся) диски, защищающие топливные баки от повреждения при возникновении отрицательного или избыточного давления, превышающего установленный предел безопасной эксплуатации. При отклонении давления от заданных значений диск разрушается и после устранения неполадок заменяется. Также на смотровом люке между нервюрами 17 и 18 расположены заборники дренажа с пламяпреградителями, препятствующими попаданию открытого пламени в дренажные баки.

В нижней зоне каждого из дренажных баков установлен датчик – сигнализатор уровня, посылающий сигнал в систему заправки топливом на блокировку заправки при заполнении 1/3 высоты дренажного бака топливом, а также всасывающие патрубки струйных насосов, предназначенных для откачки топлива, попавшего в дренажные баки.

Дренажная система топливных баков поддерживает давление в баках в пределах эксплуатационных ограничений на всех режимах эксплуатации.

Такие режимы включают следующие:

  • снижение с пустыми баками на максимальной аварийной скорости;
  • набор высоты с баками наполненными топливом, с максимально допустимой скоростью набора;
  • случайный перелив топлива при заправке.

Разделы

  • Реестр
  • Эксплуатация
  • Производство
  • История
  • Самолёт
  • Испытания
  • Обучение
  • Биографии
  • Отзывы пилотов
  • Пассажиры
  • Заказчики
  • Мифы СМИ
    • «Не русский самолет»
    • «Камней наглотает»
    • «Стоит $7 млрд»
    • «Убили Ту-334»
    • «Разрушили все КБ»
    • Катастрофа в Индонезии
    • Чёрный маркетинг
    • Разборы статей
    • Полный список мифов
  • Конкуренты
  • Блогеры
  • Пресса
  • Фотографии
  • Инфографика
  • Видеотека
  • Форум
  • Полезные ссылки
  • MC-21->
  • Registry
  • English

e-190
interjet
sam-146
sky
авиа
ан-148
Аэрофлот
безопасность
брэо
Видео
Газпром
ГСС
деньги
заказчики
инцидент
история
конкуренты
мифы
Московия
отзыв
пилоты
производство
российский?
сми
сравнение
фото
цос
эксплуатация
ЮТэйр
Якутия

Воздухоочиститель

Для очистки всасываемого в цилиндр воздуха на дизеле установлен воздухоочиститель сухого  типа с применяемым в качестве фильтрующего элемента бумажных фильтр – патронов.

Воздух проходит предварительную в предочистители типа “Инерционная щетка” с эжекционным удалением отсепарированной пыли.

Предочиститель устанавливается на переходную трубу воздухоочистителя и крепится стяжным хомутом.

Для предотвращения засорения сетки воздухоочистителя пожнивными остатками на воздухоочиститель одевается защитный чехол.

Окончательную очистку воздух проходит в воздухоочистителе, который состоит из корпуса, внутри которого с помощью стяжного болта закреплены два фильтр – патрона: основной и предохранительный. Уплотнение фильтр – патронов с корпусом обеспечивается уплотнительными кольцами, приклеенным к торцам фильтр – патронов, а по стяжному болту – уплотнительными шайбами. Крышка поджимается к корпусу маховичком или барашковой гайкой с уплотнительной шайбой, наворачиваемой на стяжной болт. Фильтр – патроны воздухоочистителя состоят из наружной и внутренней сеток, бумажной фильтрующей шторы, заключенной внутри сеток и донышек, скрепленных герметично эпоксидной смолой или  полиэтиленом.

Воздух под действием разряжения, создаваемого во всасывающем коллекторе, пройдя через предочиститель, попадает внутрь корпуса воздухоочистителя. Проходя последовательно через фильтр – патроны, воздух очищается от пыли через выходной патрубок и поступает в турбокомпрессор. При этом предохранительный фильтр – патрон выполняет роль гарантийного элемента для защиты от пыли, в случае повреждения основного фильтр – патрона.

Турбокомпрессор

На дизеле установлен турбокомпрессор ТКР 8,5Н использующий энергию выпускных газов для наддува воздуха в цилиндры дизеля. Увеличивая весовое количество воздуха, поступающего в цилиндры, турбокомпрессор способствует повышению мощности дизеля.

Турбокомпрессор состоит из центробежного одноступенчатого компрессора с лопаточным диффузором и радиальной центростремительной турбины.

Корпус турбины отлит из чугуна, имеет газопроводящий спиральный канал (улитку) и фланец для крепления к выпускному коллектору. Проточная часть турбины для прохода выпускных газов образована корпусом турбины, сопловым венцом и колесом турбины.

Корпус компрессора отлит из алюминиевого сплава, имеет центральный входной патрубок и спиральный канал с выходным патрубком. Проточная часть компрессора образована корпусом компрессора, диском диффузора и колесом компрессора.

Корпусы турбины и компрессора крепятся  к  среднему корпусу, отлитому из алюминиевого сплава. Вал ротора турбокомпрессора вращается в бронзовом подшипнике типа качающейся  втулки. Подшипник установлен  в центральной бабышке среднего корпуса с определенным зазором. От вращения и осевого перемещения он удерживается фиксатором.

Подшипник турбокомпрессора смазывается маслом поступающим из масляного фильтра турбокомпрессора по каналу, просверленного в фиксаторе. Из турбокомпрессора масло по маслоотводящей трубке сливается в картер дизеля.

Колесо турбины отлито из жаропрочной легированной стали и приварено к валу ротора. Колесо компрессора отлито из алюминиевого сплава и крепится на валу ротора специальной гайкой.

Подкачивающий насос

Подкачивающий насос поршневого типа предназначен для подачи топлива из топливного бака к топливному насосу.

Насос состоит из корпуса, в  котором располагается со штангой и толкателем. Поршень прижимается к штоку пружиной. В корпусе расположены впускной и нагнетательный клапаны. На корпусе  размещен также насос ручной подкачки топлива, который состоит из цилиндра, поршня, рукоятки, крышки цилиндра и прокладки для уплотнения полости цилиндра, когда насосом не пользуются.

При вращении валика топливного насоса кулачок, налегая на ролик толкателя, перемещает толкатель. Движение через шток передаётся поршню, который перемещаясь сжимает пружину. При этом в полости над поршнем топливо сжимается и  нагнетается через клапан в пространство под поршнем, где в это время создается разряжение. При обратном движении толкателя топливо, находящееся под поршнем, нагнетается в топливопровод, идущий к фильтру тонкой очистки, а в полость над поршнем поступает новая порция топлива.

Для заполнения системы питания топливом перед пуском и удаление из нее воздуха пользуются насосом ручной прокачки. Для прокачки топлива отворачивают рукоятку и перемещают поршень в цилиндре вверх – вниз. При этом топливо нагнетается через клапан в систему. После прокачки рукоятку наворачивают на крышку цилиндра. Поршень плотно прижимается к резиновой прокладке и запирает полость цилиндра.

Устройство и принцип работы бензиновой системы питания

Вне зависимости от типа используемого двигателя, топливная система автомобиля представляет собой сложно организованный механизм. Исходя из первого пункта статьи, наверное, каждый понял, что принципы построения системы питания на дизеле и бензиновом агрегате различаются, поэтому для их понимания следует рассмотреть каждый вариант в отдельности. Начнём, пожалуй, с топливной системы двигателя на бензине.

Как стало ясно, топливно-воздушная смесь для бензинового мотора формируется не в цилиндрах. Если быть точнее, то она может изготавливаться либо в топливораспределительном механизме (при использовании карбюратора), либо во впускном тракте (при использовании инжектора). В общем виде конструкция бензиновой системы питания выглядит так:

  • Топливораспределительный узел – карбюратор или инжектор. Карбюраторная система работает по принципу смесеобразования в самом устройстве. То есть, внутренние жиклёры карбюратора выталкивают топливо в специальный канал, направленный во впускной тракт, по которому идёт воздух с большой скоростью (до 150 м/с) и смешивается с горючем. В итоге формируется топливно-воздушная смесь. Инжекторная же система питания через форсунки впрыскивает топливо напрямую во впускной тракт, где он смешивается с воздухом и попадает в цилиндры. Получается, что карбюратор, по сути, просто соединяет поток воздуха с жидким топливом, и они формируют единую смесь самостоятельно, отправляясь в цилиндры, а инжектор смешивает составляющие смеси путем разбрызгивания уже частичек топлива непосредственно во впускной тракт. Благодаря такой тонкой работе, инжекторные системы более экономичны, а работают под чутким управлением электроники. Из-за этого преимущества инжекторы уже давно вытеснили карбюраторы из автомобилестроительной сферы, поэтому последние можно встретить только на старых моделях авто;
  • Топливные фильтры – элементы грубой и тонкой очистки. Данные узлы требуются для фильтрации топлива от сторонних фракций, что помогает продлить срок службы всех элементов системы и двигателя в частности;
  • Топливные магистрали – шланги. Используются для циркуляции горючего от бака до топливораспределительного механизма;
  • Ёмкость для хранения топлива – бензобак. Требуется, естественно, для сохранения необходимого количества бензина, подающегося в мотор через отмеченные ранее узлы;
  • Нагнетатель давления – бензонасос. Создаёт нужное давление в топливной системе для того, чтобы топливо своевременно и в полной мере доходило из бака до нужных узлов.

Топливо-распределительный узел

Топливные фильтры

Топливный шланг

Бензобак

Бензонасос

Детальное описание каждого элемента системы рассматривать не будем, так как им посвящены многочисленные статьи на страницах нашего ресурса

Для общей информации обратим внимание на принцип работы топливной системы бензинового мотора:

  1. При запуске двигателя первым в работу вступает бензонасос, который за считанные секунды создаёт в системе нужное давление и нагнетает бензин к топливной рампе инжектора, к которой крепятся форсунки, или же в полости карбюратора;
  2. После этого начинают функционировать сами топливораспределительные узлы, отправляющие либо уже приготовленную топливную смесь в цилиндры (карбюратор), либо распрыскивающие горючее во впускной тракт (инжектор);
  3. Попав в мотор, бензино-воздушная смесь воспламеняется, и описанный порядок повторяется вновь.

Естественно, в процессе работы топливная система чётко дозирует топливо по заданным настройкам. Так, инжектор регулирует подачу топлива при помощи электронного блока управления, а карбюратор — через настроенные и подобранные ранее жиклёры.

Устройство системы

Инжекторная система подачи топлива состоит из электронной и механической составляющих. Первая контролирует параметры работы силового агрегата и на их основе подает сигналы для срабатывания исполнительной (механической) части.

К электронной составляющей относится микроконтроллер (электронный блок управления) и большое количество следящих датчиков:

  • лямбда-зонд;
  • положения коленвала;
  • массового расхода воздуха;
  • положения дроссельной заслонки;
  • детонации;
  • температуры ОЖ;
  • давления воздуха во впускном коллекторе.

Датчики системы инжектора

На некоторых авто могут иметься еще несколько дополнительных датчиков. У всех у них одна задача – определять параметры работы силового агрегата и передавать их на ЭБУ

Что касается механической части, то в ее состав входят такие элементы:

  • бак;
  • электрический топливный насос;
  • топливные магистрали;
  • фильтр;
  • регулятор давления;
  • топливная рампа;
  • форсунки.

Простая инжекторная система подачи топлива

Управление и контроль

Управление и контроль над работой топливной системы осуществляется с помощью независимых подсистем управления, которые выполняют следующие функции (далее система управления и контроля):
• управление и контроль над работой топливных насосов;
• управление и контроль над работой перекрывных кранов в системах подачи топлива к двигателям и ВСУ и крана перекрестного питания;
• вычисление и индикацию оставшегося количества топлива на самолете по информации от датчиков расхода топлива, установленных в топливных системах двигателей;
• измерение количества топлива в топливных баках, управление заправкой и другие функции, которые перечислены ниже.

Система управления и контроля над работой топливных насосов обеспечивает:
• ручное управление основными топливными насосами, которые обеспечивают подачу топлива к двигателям и подачу активного топлива на привод струйных насосов перекачки;
• ручное и автоматическое управление насосами постоянного тока, которые обеспечивают подачу топлива к ВСУ и основным двигателям при их запуске, работе и при отказах основных насосов;
• формирование сигналов о состоянии топливных насосов (работает, не работает, отказ);
• формирование предупредительных сигналов о состоянии топливных насосов;

Система управления и контроля над работой перекрывных кранов в системах подачи топлива к двигателям и ВСУ и крана перекрестного питания обеспечивает:
• ручное управление работой перекрывных кранов;
• формирование сигналов о состоянии кранов (работает, не работает, отказ);
• формирование предупредительных сигналов о состоянии о состоянии кранов
Система вычисления и индикации оставшегося количества топлива на самолете по информации от датчиков расхода топлива, установленных в топливных системах двигателей, обеспечивает:
• вычисление суммарного оставшегося количества топлива на самолете по информации от датчиков расхода топлива, установленных в топливных системах двигателей (далее расходомеры);
• вычисление оставшегося количества топлива для каждого двигателя по информации от расходомера;
• вычисление разности значений запаса топлива между вычислениями топливомера и расходомеров;
• формирование сигнала о превышении допустимой разности;
• индикацию оставшегося запаса топлива экипажу.

Измерение количества топлива и управление заправкой осуществляется (СУИТ-RRJ), которая обеспечивает:
• измерение, вычисление и индикацию количества топлива в каждом баке и отсеке по информации от топливомера;
• вычисление и индикацию суммарного количества топлива на самолете по информации от топливомера;
• вычисление суммарного количества топлива на самолете по информации от топливомера для левого и правого борта;
• вычисление разности значений запаса топлива между вычислениями топливомера и расходомеров и формирование сигнала превышения допустимой разности;
• измерение температуры топлива в баках и сигнализацию о приближении её к температуре кристаллизации топлива;
• измерение и вычисление плотности топлива при заправке на земле и при выработке в полете;
• ручное и автоматическое управление заправкой топливом на земле;
• управление централизованным сливом топлива на земле;
• обнаружение и формирование сигнала о наличии в баках свободной воды;
• формирование сигналов о резервном остатке топлива на самолете по левому и правому бортам от независимых сигнализаторов уровня;
• формирование сигналов об остатке топлива на самолете по левому и правому бортам от независимых сигнализаторов уровня на 30 минут полета;
• формирование сигнала о резервном остатке топлива на самолете по информации от топливомера;
• формирование сигнала об остатке топлива на самолете по информации от топливомера на 30 минут полета;
• выдачу необходимой кодовой информации в смежные системы самолета;
• проведение встроенного контроля исправности системы и взаимодействующих с ней изделий в процессе предполетной подготовки.

Топливная система на самолетах семейства RRJ унифицирована.

Карбюратор К-126Б

1 — клапан экономайзера; 2 — поршень ускорительного насоса; 3 — шток привода экономайзера; 4 — шток привода ускорительного насоса; 5 — крышка поплавковой камеры; 6 — воздушный жиклер главного дозирующего устройства; 7— малый диффузор;   8 — трубка топливного жиклера системы холостого хода; 9 — воздушная заслонка; 10 — блок распылителей экономайзера и ускорительного насоса; 11 — полый винт; 12 — нагнетательный клапан; 13 — воздушный жиклер системы холостого хода; 14 — распылитель малого диффузора; 15 — игольчатый клапан; 16 — фильтр; 17 — поплавок; IS — клапан датчика; 19 — пружина; 20 — корпус ротора; 21 — регулировочный винт; 22 — смотровое окно; 23 — мембрана; 24 — пружина ограничителя; 25 — ось дроссельных заслонок; 26 — вакуумный жиклер; 27 — прокладка; 28 — воздушный жиклер; 29 — манжета; 30 — главный топливный жиклер; 31 — эмульсионная трубка; 32 — дроссельная заслонка; 33 — регулировочные винты; 34 — корпус смесительных камер; 35 — топливный жиклер системы холостого хода; 36 — подшипник; 37 — кулачковая муфта; 38 — рычаг.

Карбюратор К.-90:

1 — корпус воздушной горловины; 2 — игольчатый клапан; 3 — сетчатый фильтр; 4 — пробка фильтра; 5 — канал балансировки поплавковой камеры; 6 — жиклер системы холостого хода; 7 и 13 — воздушные полости; 8 — жиклер полной мощности; 9 — воздушный жиклер; 10 — малый диффузор; 11 и 22 — кольцевые канавки; 12 — форсунка; 14 — полый винт; 15— воздушная заслонка; 1б — автоматический клапан; 17— толкатель; 18 w 34 — пружины; 19 и 21 — штоки; 20 — планка; 23 — корпус; 24 — манжета; 25 — пружина манжеты; 26 — втулка штока; 27 — отверстие; 28 — промежуточный толкатель; 29 ъ 31 — шариковые клапаны; 30 — седло; 32 — тяга; 33 — клапан экономайзера; 35, и 45 — каналы;36— пробка; 37 — рычаг; 38 — прокладка; 40 — нагнетательный игольчатый клапан; 41 — электромагнитный клапан (экономайзер); 42 — винты регулировки системы холостого хода; 43 — прямоугольное отверстие; 44 — круглое отверстие системы холостого хода; 46 — дроссельная заслонка; 47 — корпус смесительных камер; 48 — главный жиклер; 49 — поплавок;  50— пружина поплавка; 51 — ось дроссельных заслонок; 52 и 53— контакты датчика углового положения дроссельных заслонок; 54 — рычаг.

На карбюраторах двигателей грузовых автомобилей устанавливают исполнительный диафрагменный механизм ограничителя максимальной частоты вращения коленчатого вала двигателя.

Распределение топлива

Каждый двигатель имеет индивидуальную внутреннюю фильтрационную защиту. На заборниках топлива в расходных отсеках установлены специальные сетки.

При отказе всех топливных насосов подкачки, двигатели могут нормально функционировать, при условии соблюдения определенных ограничений по высоте и маневренной нагрузке. Эти ограничения определены в Руководстве по летной эксплуатации.

В режиме крейсерского полёта при отказе всех топливных насосов, или одновременном отключении электропитания бортовых электрических систем переменного и постоянного тока, подача топлива в двигатель обеспечивается самотёком из крыльевых топливных баков, при этом топливо из центрального бака перестаёт вырабатываться. Во время полёта под действием отрицательных перегрузок стабильная работа двигателей обеспечивается в течение 10 секунд при расходе топлива 1700 кг/час на один двигатель. В режиме самотёка, в крыльевом отсеке № 1, за счет его более низкого днища, может остаться невырабатываемый остаток топлива до 420 кг.

Фильтр грубой очистки топлива

Для предварительной фильтрации топлива на дизеле установлен фильтр грубой очистки топлива ФГ – 25, который представляет собой корпус с установленным  на нем  распределителем и отражателем выполненными в виде конуса. Отражатель закрыт металлическим стаканом, который прикреплен к корпусу нажимным кольйом и болтами. В стыке между стаканом и корпусом установлено уплотнительное кольцо. Внутри стакана размещен успокоитель, а в нижней части стакана имеется отверстие, закрытое пробкой для слива отстоя топлива.

Топливо, поступающее в фильтр по топливопроводу через сверление в корпусе, попадает на распределитель. Под успокоителем происходит отстой воды и крупных механических примесей. Отстоявшееся топливо поднимается через центральное отверстие успокоителя и с основным потоком проходит через отражатель, задерживающий механические частицы размером более 0,25 мм в поперечнике. Прошедшее через отражатель топливо через болт по топливопроводу поступает к подкачивающему насосу и дальше – к фильтру тонкой очистки.

Топливные баки

Топливо на борту размещается в трёх топливных баках:

  • центральном;
  • левой и правой крыльевых консолях.

Общий запас топлива во всех баках составляет 15805 литров.

Топливные баки имеют коррозионно-стойкую конструкцию. Баки имеют свободный дополнительный объем для безопасного расширения топлива во всех эксплуатационных
температурных режимах. Дренажные баки состоят из двух сообщающихся отсеков.

Для доступа в баки на нижних панелях консолей крыла и на стенке заднего лонжерона центрального бака имеются люки, закрываемые герметичными крышками. Нижняя часть топливных баков используется в качестве емкости для слива осадка и воды. Клапаны слива отстоя установлены в нижних точках всех топливных отсеков и дренажных баков. Слив отстоя проводится в наземных условиях.

Помогла статья? Оцените её
1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд
Загрузка...
Добавить комментарий
Adblock
detector